Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 12: 676232, 2021.
Article in English | MEDLINE | ID: covidwho-1247868

ABSTRACT

The intestinal microbiota is thought to be an important biological barrier against enteric pathogens. Its depletion, however, also has curative effects against some viral infections, suggesting that different components of the intestinal microbiota can play both promoting and inhibitory roles depending on the type of viral infection. The two primary mechanisms by which the microbiota facilitates or inhibits viral invasion involve participation in the innate and adaptive immune responses and direct or indirect interaction with the virus, during which the abundance and composition of the intestinal microbiota might be changed by the virus. Oral administration of probiotics, faecal microbiota transplantation (FMT), and antibiotics are major therapeutic strategies for regulating intestinal microbiota balance. However, these three methods have shown limited curative effects in clinical trials. Therefore, the intestinal microbiota might represent a new and promising supplementary antiviral therapeutic target, and more efficient and safer methods for regulating the microbiota require deeper investigation. This review summarizes the latest research on the relationship among the intestinal microbiota, anti-viral immunity and viruses and the most commonly used methods for regulating the intestinal microbiota with the goal of providing new insight into the antiviral effects of the gut microbiota.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/immunology , Probiotics/therapeutic use , SARS-CoV-2/physiology , Virus Diseases/therapy , Animals , Host-Pathogen Interactions , Humans
2.
Med Sci Monit ; 27: e930032, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1170574

ABSTRACT

In December 2019, pneumonia of unknown cause broke out, and currently more than 150 countries around the world have been affected. Globally, as of 5: 46 pm CET, 6 November 2020, the World Health Organization (WHO) had reported 48 534 508 confirmed cases of COVID-19, including 1 231 017 deaths. The novel coronavirus disease (COVID-19) outbreak, caused by the SARS-CoV-2 virus, is the most important medical challenge in decades. Previous research mainly focused on the exploration of lung changes. However, with development of the disease and deepening research, more and more patients showed cardiovascular diseases, even in those without respiratory symptoms, and some researchers have found that underlying cardiovascular diseases increase the risk of infection. Although the related mechanism is not thoroughly studied, based on existing research, we speculate that the interaction between the virus and its receptor, inflammatory factors, various forms of the stress response, hypoxic environment, and drug administration could all induce the development of cardiac adverse events. Interventions to control these pathogenic factors may effectively reduce the occurrence of cardiovascular complications. This review summarizes the latest research on the relationship between COVID-19 and its associated cardiovascular complications, and we also explore possible mechanisms and treatments.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/virology , Humans , Lung/pathology , Myocardium/pathology , Pandemics , SARS-CoV-2/isolation & purification , World Health Organization
3.
Biomed Pharmacother ; 133: 111064, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059802

ABSTRACT

COVID-19 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early reported symptoms include fever, cough, and respiratory symptoms. There were few reports of digestive symptoms. However, with COVID-19 spreading worldwide, symptoms such as vomiting, diarrhoea, and abdominal pain have gained increasing attention. Research has found that angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, is strongly expressed in the gastrointestinal tract and liver. Whether theoretically or clinically, many studies have suggested a close connection between COVID-19 and the digestive system. In this review, we summarize the digestive symptoms reported in existing research, discuss the impact of SARS-CoV-2 on the gastrointestinal tract and liver, and determine the possible mechanisms and aetiology, such as cytokine storm. In-depth exploration of the relationship between COVID-19 and the digestive system is urgently needed.


Subject(s)
COVID-19/complications , Gastrointestinal Diseases/etiology , Liver Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Anorexia/etiology , Antiviral Agents/adverse effects , Bile Ducts/metabolism , Bile Ducts/virology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Chemical and Drug Induced Liver Injury/etiology , Comorbidity , Cytokine Release Syndrome/etiology , Cytopathogenic Effect, Viral , Gastrointestinal Diseases/epidemiology , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Immunosuppressive Agents/adverse effects , Liver/metabolism , Liver/pathology , Liver/virology , Liver Diseases/epidemiology , Liver Transplantation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Postoperative Complications , Receptors, Virus/metabolism
4.
Oxid Med Cell Longev ; 2020: 8384742, 2020.
Article in English | MEDLINE | ID: covidwho-788248

ABSTRACT

H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.


Subject(s)
Hydrogen/administration & dosage , Hydrogen/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Betacoronavirus , COVID-19 , Coronavirus Infections/therapy , Energy Metabolism/drug effects , Humans , Oxidative Stress/drug effects , Pandemics , Pneumonia, Viral/therapy , Protective Agents/pharmacology , SARS-CoV-2
5.
Clin Immunol ; 218: 108524, 2020 09.
Article in English | MEDLINE | ID: covidwho-639598

ABSTRACT

The outbreak of SARS-CoV-2-associated pneumonia, a disease called COVID-19, has caused a pandemic worldwide. To investigate the immune responses after infection of SARS-CoV-2 in non-critical patients may help to better understand the disease progression. We collected 334 confirmed COVID-19 cases including 212 still in hospital with nucleic acid test positive on halfway for SARS-CoV-2 and 122 discharged from hospital, compared specific antibodies, immune cells, and cytokine changes between the hospitalized and discharged patients. The hospitalized patients had a longer illness time compared with discharged patients. Analysis of viral loads explained long-term or persistent infection of SARS-CoV-2, which existed with the median time of 18.5 days of the positive nucleic acid test. Serum analysis showed that the specific anti-N IgG antibody was positive in all detected patients after infection of two weeks. Neutrophils, Monocytes, NK cells, and CD4+ T cells significantly increased, while total lymphocytes and CD8+ T cells decreased from non-critical hospitalized patients after longer-term infection. Further analysis of the cytokines showed that IL-6, TNF-α, IFN-γ, IL-2, IL-4, and IL-10 from the hospitalized patients were significantly higher, indicating a potential of the increased CD4+ T cell differentiation.


Subject(s)
Betacoronavirus/pathogenicity , Cardiovascular Diseases/immunology , Coronavirus Infections/immunology , Diabetes Mellitus/immunology , Immunity, Innate , Lung Diseases/immunology , Neoplasms/immunology , Pneumonia, Viral/immunology , Aged , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , China/epidemiology , Comorbidity , Convalescence , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Diabetes Mellitus/epidemiology , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Female , Hospitalization , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lung Diseases/epidemiology , Lung Diseases/pathology , Lung Diseases/virology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/pathology , Lymphocyte Subsets/virology , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Neoplasms/epidemiology , Neoplasms/pathology , Neoplasms/virology , Neutrophils/immunology , Neutrophils/pathology , Neutrophils/virology , Pandemics , Patient Discharge , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Time Factors , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL